
2. THE ‘STANDARD TRICK OF MEASURE THEORY’!

While we care about sigma fields only, there are smaller sub-classes that are useful in elucidating the proofs. Here
we define some of these.

Definition 11. Let S be a collection of subsets of Ω. We say that S is a
(1) π-system if A,B ∈ S =⇒ A∩B ∈ S.
(2) λ-system if (i) Ω ∈ S. (ii) A,B ∈ S and A⊆ B =⇒ B\A ∈ S. (iii) An ↑ A and An ∈ S =⇒ A ∈ S.
(3) Algebra if (i) φ,Ω ∈ S. (ii) A ∈ S =⇒ Ac ∈ S. (iii) A,B ∈ S =⇒ A∪B ∈ S.
(4) σ-algebra if (i) φ,Ω ∈ S. (ii) A ∈ S =⇒ Ac ∈ S. (iii) An ∈ S =⇒ ∪An ∈ S.

We have included the last one again for comparision. Note that the difference between algebras and σ-algebras is
just that the latter is closed under countable unions while the former is closed only under finite unions. As with σ-
algebras, arbitrary intersections of algebras/λ-systems/π-systems are again algebras/λ-systems/π-systems and hence
one can talk of the algebra generated by a collection of subsets etc.

Example 12. The table below exhibits some examples.
Ω S (π− system) A(S) (algebra generated by S) σ(S)

(0,1] {(a,b] : 0 < a≤ b≤ 1} {∪N
k=1(ak,bk] : 0 < a1 ≤ b1 ≤ a2 ≤ b2 . . .≤ bN ≤ 1} B(0,1]

[0,1] {(a,b]∩ [0,1] : a≤ b} {∪N
k=1Rk : Rk ∈ S are pairwise disjoint} B[0,1]

Rd {∏d
i=1(ai,bi] : ai ≤ bi} {∪N

k=1Rk : Rk ∈ S are pairwise disjoint} BRd

{0,1}N collection of all cylinder sets finite disjoint unions of cylinders B({0,1}N)
Often, as in these examples, sets in a π-system and in the algebra generated by the π-system can be described
explicitly, but not so the sets in the generated σ-algebra.

Clearly, a σ-algebra is an algebra is a π-systemas well as a λ-system. The following converse will be useful. Plus,
the proof exhibits a basic trick of measure theory!

Lemma 13 (Sierpinski-Dynkin π−λ theorem). Let Ω be a set and let F be a set of subsets of Ω.
(1) F is a σ-algebra if and only if it is a π-system as well as a λ-system.
(2) If S is a π-system, then λ(S) = σ(S).

Proof. (1) One way is clear. For the other way, suppose F is a π-system as well as a λ-system. Then, φ,Ω ∈ F .
If A ∈ F , then Ac = Ω\A ∈ F . If An ∈ F , then the finite unions Bn := ∪n

k=1Ak =
(
∩n

k=1Ac
k
)c belong to F

as F is a π-system. The countable union ∪An is the increasing limit of Bn and hence belongs to F by the
λ-property.

(2) By part (i), it suffices to show that F := λ(S) is a π-system, that is, we only need show that if A,B ∈ F , then
A∩B ∈ F . This is the tricky part of the proof!

Fix A ∈ S and let FA := {B ∈ F : B∩A ∈ F }. S is a π-system, hence FA ⊃ S. We claim that FA is a
λ-system. Clearly, Ω ∈ FA. If B,C ∈ FA and B⊂C, then (C\B)∩A = (C∩A)\(B∩A) ∈ F because F is a
λ-system containing C∩A and B∩A. Thus (C\B)∈ FA. Lastly, if Bn ∈ FA and Bn ↑ B, then Bn∩A∈ FA and
Bn∩A ↑ B∩A. Thus B ∈ FA. This means that FA is a λ-system containing S and hence FA ⊃ F . In other
words, A∩B ∈ F for all A ∈ S and all B ∈ F .

Now fix any A ∈ F . And again define FA := {B ∈ F : B∩A ∈ F }. Because of what we have already
shown, FA ⊃ S. Show by the same arguments that FA is a λ-system and conclude that FA = F for all A∈ F .
This is another way of saying that F is a π-system. !

As an application, we prove a certain uniqueness of extension of measures.

Lemma 14. Let S be a π-system of subsets of Ω and let F = σ(S). If P and Q are two probability measures on F
such that P(A) = Q(A) for all A ∈ S, then P(A) = Q(A) for all A ∈ F .

Proof. Let T = {A ∈ F : P(A) = Q(A)}. By the hypothesis T ⊃ S. We claim that T is a λ-system. Clearly, Ω ∈ T .
If A,B ∈ T and A ⊃ B, then P(A\B) = P(A)−P(B) = Q(A)−Q(B) = Q(A\B) implying that A\B ∈ T . Lastly, if
An ∈ T and An ↑ A, then P(A) = limn→∞ P(An) = limn→∞ Q(An) = Q(A). Thus T ⊃ λ(S) which is equal to σ(S) by
Dynkin’s π−λ theorem. Thus P = Q on F . !
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3. LEBESGUE MEASURE

Theorem 15. There exists a unique Borel probability measure m on [0,1] such that m(I) = |I| for any interval I.

[Sketch of the proof] Note that S = {(a,b]∩ [0,1]} is a π-system that generate B . Therefore by Lemma 14, unique-
ness follows. Existence is all we need to show. There are two steps.

Step 1 - Construction of the outer measure m∗ Recall that we define m∗(A) for any subset by

m∗(A) = inf

{

∑
k
|Ik| : each Ik is an open interval and {Ik} a countable cover for A

}
.

m∗ has the following properties. (i) m∗ is a [0,1]-valued function defined on all subsets A ⊂ Ω. (ii) m∗(A∪B) ≤
m∗(A)+m∗(B) for any A,B⊂Ω. (iii) m∗(Ω) = 1.

These properties constitute the definition of an outer measure. In the case at hand, the last property follows from
the following exercise.

Exercise 16. Show that m∗(a,b] = b−a if 0 < a≤ b≤ 1.

Clearly, we also get countable subadditivity m∗(∪An)≤∑m∗(An). The difference from a measure is that equality
might not hold, even if the sets are pairwise disjoint.

Step-2 - The σ-field on which m∗ is a measure
Let m∗ be an outer measure on a set Ω. Then by restricting m∗ to an appropriate σ-fields one gets a measure. We

would also like this σ-field to be large (not the sigma algebra { /0,Ω} please!).
Cartheodary’s brilliant definition is to set

F := {A⊂Ω : m∗(E) = m∗(A∩E)+m∗(Ac∩E) for any E} .

Note that subadditivity implies m∗(E)≤m∗(A∩E)+m∗(Ac∩E) for any E for any A,E. The non-trivial inequality
is the other way.

Theorem 17. Then, F is a sigma algebra and µ∗ restricted to F is a p.m.

Proof. It is clear that /0,Ω ∈ F and A ∈ F implies Ac ∈ F . Next, suppose A,B ∈ F . Then for any E,

m∗(E)= m∗(E∩A)+m∗(E∩Ac)= m∗(E∩A∩B)+{m∗(E∩A∩Bc)+m∗(E∩Ac)}≥m∗(E∩A∩B)+m∗(E∩(A∩B)c))

where the last inequality holds by subadditivity of m∗ and (E ∩A∩Bc)∪ (E ∩Ac) = E ∩ (A∩B)c. Hence F is a
π-system.

As A∪B = (Ac∩Bc)c, it also follows that F is an algebra. For future use, note that m∗(A∪B) = m∗(A)+m∗(B)
if A,B are disjoint sets in F . To see this apply the definition of A ∈ F with E = A∪B.

It suffices to show that F is a λ-system. Suppose A,B ∈ F and A⊃ B. Then

m∗(E)= m∗(E∩Bc)+m∗(E∩B)= m∗(E∩Bc∩A)+m∗(E∩Bc∩Ac)+m∗(E∩B)≥m∗(E∩(A\B))+m∗(E∩(A\B)c).

Before showing closure under increasing limits, Next suppose An ∈ F and An ↑ A. Then m∗(A) ≥ m∗(An) =
∑n

k=1 m∗(Ak\Ak−1) by finite additivity of m∗. Hence m∗(A)≥ ∑m∗(Ak\Ak−1). The other way inequality follows by
subadditivity of m∗ and we get m∗(A) = ∑m∗(Ak\Ak−1). Then for any E we get

m∗(E) = m∗(E ∩An)+m∗(E ∩Ac
n)≥m∗(E ∩An)+m∗(E ∩Ac) =

n

∑
k=1

m∗(E ∩ (Ak\Ak−1))+m∗(E ∩Ac).

The last equality follows by finite additivity of m∗ on F . Let n→ ∞ and use subadditivity to see that

m∗(E)≥
∞

∑
k=1

m∗(E ∩ (Ak\Ak−1))+m∗(E ∩Ac)≥m∗(E ∩A)+m∗(E ∩Ac).

Thus, A ∈ F and it follows that F is a λ-system too and hence a σ-algebra.
Lastly, if An ∈ F are pairwise disjoint with union A, then m∗(A) ≥ m∗(An) = ∑n

k=1 m∗(Ak)→ ∑k m∗(Ak) while
the other way inequality follows by subadditivity of m∗ and we see that m∗|F is a measure.
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Step-3 - F is large enough!
Let A = (a,b]. For any E ⊂ [0,1], let {In} be an open cover such that m∗(E)≥∑ |In|. Then, note that {In∩ (a,b)}

and {In∩ [a,b]c} are open covers for A∩E and Ac∩E, respectively (In∩ [a,b]c may be a union of two intervals, but
that does not change anything essential). It is also clear that |In| = |In∩ (a,b)|+ |In∩ (a,b)c|. Hence we get

m∗(E)≥∑ |In∩ (a,b)|+∑ |In∩ (a,b)c|≥m∗(A∩E)+m∗(Ac∩E).

The other inequality follows by subadditivity and we see that A ∈ F . Since the intervals (a,b] generate B , and F is
a sigma algebra, we get F ⊃ B . Thus, restricted to B also, m∗ gives a p.m. !

Remark 18. (1) We got a σ-algebra F that is larger than B . Two natural questions. Does F or B contain all
subsets of [0,1]? Is F strictly larger than B? We show that F does not contain all subsets. One of the
homework problems deals with the relationship between B and F .

(2) m, called the Lebesgue measure on [0,1], is the only probability space one ever needs. In fact, all probabil-
ities ever calculated can be seen, in principle, as calculating the Lebsgue measure of some Borel subset of
[0,1]!

Generalities The construction of Lebesgue measure can be made into a general procedure for constructing interest-
ing measures, starting from measures of some rich enough class of sets. The steps are as follows.

(1) Given an algebra A (in this case finite unions of (a,b]), and a countably additive p.m P on A , define an outer
measure P∗ on all subsets by taking infimum over countable covers by sets in A .

(2) Then define F exactly as above, and prove that F ⊃ A is a σ-algebra and P∗ is a p.m. on A .
(3) Show that P∗ = P on A .

Proofs are quite the same. Except, in [0,1] we started with m defined on a π-system S rather than an algebra. But in
this case the generated algebra consists precisely of disjoint unions of sets in S, and hence we knew how to define
m on A(S). When can we start with P defined ona π-system? The crucial point in [0,1] was that for any A ∈ S, one
can write Ac as a finite union of sets in S. In such cases (which includes examples from the previous lecture) the
generated algebra is precisely the set of disjoint finite unions of sets in S and we define P on A(S) and then proceed
to step one above.

Exercise 19. Use the general procedure as described here, to construct the following measures.
(a) A p.m. on ([0,1]d ,B) such that P([a1,b1]× . . .× [ad ,bd ]) = ∏d

k=1(bk− ak) for all cubes contained in [0,1]d .
This is the d-dimensional Lebesgue measure.

(b) A p.m. on {0,1}N such that for any cylinder set A = {ω : ωk j = ε j, j = 1, . . . ,n} (any n≥ 1 and k j ∈ N and
ε j ∈ {0,1}) we have (for a fixed p ∈ [0,1] and q = 1− p)

P(A) =
n

∏
j=1

pε j q1−ε j .

[Hint: Start with the algebra generated by cylinder sets].
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