2. THE ‘STANDARD TRICK OF MEASURE THEORY’!

While we care about sigma fields only, there are smaller sub-classes that are useful in elucidating the proofs. Here we define some of these.

Definition 11. Let S be a collection of subsets of Ω. We say that S is a
(1) π-system if $A, B \in S \Longrightarrow A \cap B \in S$.
(2) λ-system if (i) $\Omega \in S$. (ii) $A, B \in S$ and $A \subseteq B \Longrightarrow B \backslash A \in S$. (iii) $A_{n} \uparrow A$ and $A_{n} \in S \Longrightarrow A \in S$.
(3) Algebra if (i) $\phi, \Omega \in S$. (ii) $A \in S \Longrightarrow A^{c} \in S$. (iii) $A, B \in S \Longrightarrow A \cup B \in S$.
(4) σ-algebra if (i) $\phi, \Omega \in S$. (ii) $A \in S \Longrightarrow A^{c} \in S$. (iii) $A_{n} \in S \Longrightarrow \cup A_{n} \in S$.

We have included the last one again for comparision. Note that the difference between algebras and σ-algebras is just that the latter is closed under countable unions while the former is closed only under finite unions. As with σ algebras, arbitrary intersections of algebras $/ \lambda$-systems $/ \pi$-systems are again algebras $/ \lambda$-systems $/ \pi$-systems and hence one can talk of the algebra generated by a collection of subsets etc.

Example 12. The table below exhibits some examples.

Ω	$S(\pi-$ system $)$	$\mathcal{A}(S)$ (algebra generated by $S)$	$\sigma(S)$
$(0,1]$	$\{(a, b]: 0<a \leq b \leq 1\}$	$\left\{\cup_{k=1}^{N}\left(a_{k}, b_{k}\right]: 0<a_{1} \leq b_{1} \leq a_{2} \leq b_{2} \ldots \leq b_{N} \leq 1\right\}$	$\mathcal{B}(0,1]$
$[0,1]$	$\{(a, b] \cap[0,1]: a \leq b\}$	$\left\{\cup_{k=1}^{N} R_{k}: R_{k} \in S\right.$ are pairwise disjoint $\}$	$\mathcal{B}[0,1]$
\mathbb{R}^{d}	$\left\{\prod_{i=1}^{d}\left(a_{i}, b_{i}\right]: a_{i} \leq b_{i}\right\}$	$\left\{\cup_{k=1}^{N} R_{k}: R_{k} \in S\right.$ are pairwise disjoint $\}$	$\mathcal{B}_{\mathbb{R}^{d}}$
$\{0,1\}^{\mathbb{N}}$	collection of all cylinder sets	finite disjoint unions of cylinders	$\mathcal{B}\left(\{0,1\}^{\mathbb{N}}\right)$

Often, as in these examples, sets in a π-system and in the algebra generated by the π-system can be described explicitly, but not so the sets in the generated σ-algebra.

Clearly, a σ-algebra is an algebra is a π-systemas well as a λ-system. The following converse will be useful. Plus, the proof exhibits a basic trick of measure theory!
Lemma 13 (Sierpinski-Dynkin $\pi-\lambda$ theorem). Let Ω be a set and let \mathcal{F} be a set of subsets of Ω.
(1) \mathcal{F} is a σ-algebra if and only if it is a π-system as well as a λ-system.
(2) If S is a π-system, then $\lambda(S)=\sigma(S)$.

Proof. (1) One way is clear. For the other way, suppose \mathcal{F} is a π-system as well as a λ-system. Then, $\phi, \Omega \in \mathcal{F}$. If $A \in \mathcal{F}$, then $A^{c}=\Omega \backslash A \in \mathcal{F}$. If $A_{n} \in \mathcal{F}$, then the finite unions $B_{n}:=\cup_{k=1}^{n} A_{k}=\left(\cap_{k=1}^{n} A_{k}^{c}\right)^{c}$ belong to \mathcal{F} as \mathcal{F} is a π-system. The countable union $\cup A_{n}$ is the increasing limit of B_{n} and hence belongs to \mathcal{F} by the λ-property.
(2) By part (i), it suffices to show that $\mathcal{F}:=\lambda(S)$ is a π-system, that is, we only need show that if $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$. This is the tricky part of the proof!

Fix $A \in S$ and let $\mathcal{F}_{A}:=\{B \in \mathcal{F}: B \cap A \in \mathcal{F}\}$. S is a π-system, hence $\mathcal{F}_{A} \supset S$. We claim that \mathcal{F}_{A} is a λ-system. Clearly, $\Omega \in \mathcal{F}_{A}$. If $B, C \in \mathcal{F}_{A}$ and $B \subset C$, then $(C \backslash B) \cap A=(C \cap A) \backslash(B \cap A) \in \mathcal{F}$ because \mathcal{F} is a λ-system containing $C \cap A$ and $B \cap A$. Thus $(C \backslash B) \in \mathcal{F}_{A}$. Lastly, if $B_{n} \in \mathcal{F}_{A}$ and $B_{n} \uparrow B$, then $B_{n} \cap A \in \mathcal{F}_{A}$ and $B_{n} \cap A \uparrow B \cap A$. Thus $B \in \mathcal{F}_{A}$. This means that \mathcal{F}_{A} is a λ-system containing S and hence $\mathcal{F}_{A} \supset \mathcal{F}$. In other words, $A \cap B \in \mathcal{F}$ for all $A \in S$ and all $B \in \mathcal{F}$.

Now fix any $A \in \mathcal{F}$. And again define $\mathcal{F}_{A}:=\{B \in \mathcal{F}: B \cap A \in \mathcal{F}\}$. Because of what we have already shown, $\mathcal{F}_{A} \supset S$. Show by the same arguments that \mathcal{F}_{A} is a λ-system and conclude that $\mathcal{F}_{A}=\mathcal{F}$ for all $A \in \mathcal{F}$. This is another way of saying that \mathcal{F} is a π-system.

As an application, we prove a certain uniqueness of extension of measures.
Lemma 14. Let S be a π-system of subsets of Ω and let $\mathcal{F}=\sigma(S)$. If \mathbf{P} and \mathbf{Q} are two probability measures on \mathcal{F} such that $\mathbf{P}(A)=\mathbf{Q}(A)$ for all $A \in S$, then $\mathbf{P}(A)=\mathbf{Q}(A)$ for all $A \in \mathcal{F}$.
Proof. Let $T=\{A \in \mathcal{F}: \mathbf{P}(A)=\mathbf{Q}(A)\}$. By the hypothesis $T \supset S$. We claim that T is a λ-system. Clearly, $\Omega \in T$. If $A, B \in T$ and $A \supset B$, then $\mathbf{P}(A \backslash B)=\mathbf{P}(A)-\mathbf{P}(B)=\mathbf{Q}(A)-\mathbf{Q}(B)=\mathbf{Q}(A \backslash B)$ implying that $A \backslash B \in T$. Lastly, if $A_{n} \in T$ and $A_{n} \uparrow A$, then $\mathbf{P}(A)=\lim _{n \rightarrow \infty} \mathbf{P}\left(A_{n}\right)=\lim _{n \rightarrow \infty} \mathbf{Q}\left(A_{n}\right)=\mathbf{Q}(A)$. Thus $T \supset \lambda(S)$ which is equal to $\sigma(S)$ by Dynkin's $\pi-\lambda$ theorem. Thus $\mathbf{P}=\mathbf{Q}$ on \mathcal{F}.

3. LEBESGUE MEASURE

Theorem 15. There exists a unique Borel probability measure \mathbf{m} on $[0,1]$ such that $\mathbf{m}(I)=|I|$ for any interval I.
[Sketch of the proof] Note that $S=\{(a, b] \cap[0,1]\}$ is a π-system that generate \mathcal{B}. Therefore by Lemma 14, uniqueness follows. Existence is all we need to show. There are two steps.

Step 1 - Construction of the outer measure \mathbf{m}_{*} Recall that we define $\mathbf{m}_{*}(A)$ for any subset by

$$
\mathbf{m}_{*}(A)=\inf \left\{\sum_{k}\left|I_{k}\right|: \text { each } I_{k} \text { is an open interval and }\left\{I_{k}\right\} \text { a countable cover for } A\right\} .
$$

\mathbf{m}_{*} has the following properties. (i) \mathbf{m}_{*} is a $[0,1]$-valued function defined on all subsets $A \subset \Omega$. (ii) $\mathbf{m}_{*}(A \cup B) \leq$ $\mathbf{m}_{*}(A)+\mathbf{m}_{*}(B)$ for any $A, B \subset \Omega$. (iii) $\mathbf{m}_{*}(\Omega)=1$.

These properties constitute the definition of an outer measure. In the case at hand, the last property follows from the following exercise.

Exercise 16. Show that $\mathbf{m}_{*}(a, b]=b-a$ if $0<a \leq b \leq 1$.
Clearly, we also get countable subadditivity $\mathbf{m}_{*}\left(\cup A_{n}\right) \leq \sum \mathbf{m}_{*}\left(A_{n}\right)$. The difference from a measure is that equality might not hold, even if the sets are pairwise disjoint.

Step-2 - The σ-field on which \mathbf{m}_{*} is a measure

Let \mathbf{m}_{*} be an outer measure on a set Ω. Then by restricting \mathbf{m}_{*} to an appropriate σ-fields one gets a measure. We would also like this σ-field to be large (not the sigma algebra $\{\emptyset, \Omega\}$ please!).

Cartheodary's brilliant definition is to set

$$
\mathcal{F}:=\left\{A \subset \Omega: \mathbf{m}_{*}(E)=\mathbf{m}_{*}(A \cap E)+\mathbf{m}_{*}\left(A^{c} \cap E\right) \text { for any } E\right\} .
$$

Note that subadditivity implies $\mathbf{m}_{*}(E) \leq \mathbf{m}_{*}(A \cap E)+\mathbf{m}_{*}\left(A^{c} \cap E\right)$ for any E for any A, E. The non-trivial inequality is the other way.

Theorem 17. Then, \mathcal{F} is a sigma algebra and μ_{*} restricted to \mathcal{F} is a p.m.
Proof. It is clear that $\emptyset, \Omega \in \mathcal{F}$ and $A \in \mathcal{F}$ implies $A^{c} \in \mathcal{F}$. Next, suppose $A, B \in \mathcal{F}$. Then for any E,
$\left.\mathbf{m}_{*}(E)=\mathbf{m}_{*}(E \cap A)+\mathbf{m}_{*}\left(E \cap A^{c}\right)=\mathbf{m}_{*}(E \cap A \cap B)+\left\{\mathbf{m}_{*}\left(E \cap A \cap B^{c}\right)+\mathbf{m}_{*}\left(E \cap A^{c}\right)\right\} \geq \mathbf{m}_{*}(E \cap A \cap B)+\mathbf{m}_{*}\left(E \cap(A \cap B)^{c}\right)\right)$
where the last inequality holds by subadditivity of \mathbf{m}_{*} and $\left(E \cap A \cap B^{c}\right) \cup\left(E \cap A^{c}\right)=E \cap(A \cap B)^{c}$. Hence \mathcal{F} is a π-system.

As $A \cup B=\left(A^{c} \cap B^{c}\right)^{c}$, it also follows that \mathcal{F} is an algebra. For future use, note that $\mathbf{m}_{*}(A \cup B)=\mathbf{m}_{*}(A)+\mathbf{m}_{*}(B)$ if A, B are disjoint sets in \mathcal{F}. To see this apply the definition of $A \in \mathcal{F}$ with $E=A \cup B$.

It suffices to show that \mathcal{F} is a λ-system. Suppose $A, B \in \mathcal{F}$ and $A \supset B$. Then
$\mathbf{m}_{*}(E)=\mathbf{m}_{*}\left(E \cap B^{c}\right)+\mathbf{m}_{*}(E \cap B)=\mathbf{m}_{*}\left(E \cap B^{c} \cap A\right)+\mathbf{m}_{*}\left(E \cap B^{c} \cap A^{c}\right)+\mathbf{m}_{*}(E \cap B) \geq \mathbf{m}_{*}(E \cap(A \backslash B))+\mathbf{m}_{*}\left(E \cap(A \backslash B)^{c}\right)$.
Before showing closure under increasing limits, Next suppose $A_{n} \in \mathcal{F}$ and $A_{n} \uparrow A$. Then $\mathbf{m}_{*}(A) \geq \mathbf{m}_{*}\left(A_{n}\right)=$ $\sum_{k=1}^{n} \mathbf{m}_{*}\left(A_{k} \backslash A_{k-1}\right)$ by finite additivity of \mathbf{m}_{*}. Hence $\mathbf{m}_{*}(A) \geq \sum \mathbf{m}_{*}\left(A_{k} \backslash A_{k-1}\right)$. The other way inequality follows by subadditivity of \mathbf{m}_{*} and we get $\mathbf{m}_{*}(A)=\sum \mathbf{m}_{*}\left(A_{k} \backslash A_{k-1}\right)$. Then for any E we get

$$
\mathbf{m}_{*}(E)=\mathbf{m}_{*}\left(E \cap A_{n}\right)+\mathbf{m}_{*}\left(E \cap A_{n}^{c}\right) \geq \mathbf{m}_{*}\left(E \cap A_{n}\right)+\mathbf{m}_{*}\left(E \cap A^{c}\right)=\sum_{k=1}^{n} \mathbf{m}_{*}\left(E \cap\left(A_{k} \backslash A_{k-1}\right)\right)+\mathbf{m}_{*}\left(E \cap A^{c}\right) .
$$

The last equality follows by finite additivity of \mathbf{m}_{*} on \mathcal{F}. Let $n \rightarrow \infty$ and use subadditivity to see that

$$
\mathbf{m}_{*}(E) \geq \sum_{k=1}^{\infty} \mathbf{m}_{*}\left(E \cap\left(A_{k} \backslash A_{k-1}\right)\right)+\mathbf{m}_{*}\left(E \cap A^{c}\right) \geq \mathbf{m}_{*}(E \cap A)+\mathbf{m}_{*}\left(E \cap A^{c}\right)
$$

Thus, $A \in \mathcal{F}$ and it follows that \mathcal{F} is a λ-system too and hence a σ-algebra.
Lastly, if $A_{n} \in \mathcal{F}$ are pairwise disjoint with union A, then $\mathbf{m}_{*}(A) \geq \mathbf{m}_{*}\left(A_{n}\right)=\sum_{k=1}^{n} \mathbf{m}_{*}\left(A_{k}\right) \rightarrow \sum_{k} \mathbf{m}_{*}\left(A_{k}\right)$ while the other way inequality follows by subadditivity of \mathbf{m}_{*} and we see that $\left.\mathbf{m}_{*}\right|_{\mathcal{F}}$ is a measure.

Step-3- \mathcal{F} is large enough!

Let $A=(a, b]$. For any $E \subset[0,1]$, let $\left\{I_{n}\right\}$ be an open cover such that $\mathbf{m}_{*}(E) \geq \sum\left|I_{n}\right|$. Then, note that $\left\{I_{n} \cap(a, b)\right\}$ and $\left\{I_{n} \cap[a, b]^{c}\right\}$ are open covers for $A \cap E$ and $A^{c} \cap E$, respectively $\left(I_{n} \cap[a, b]^{c}\right.$ may be a union of two intervals, but that does not change anything essential). It is also clear that $\left|I_{n}\right|=\left|I_{n} \cap(a, b)\right|+\left|I_{n} \cap(a, b)^{c}\right|$. Hence we get

$$
\mathbf{m}_{*}(E) \geq \sum\left|I_{n} \cap(a, b)\right|+\sum\left|I_{n} \cap(a, b)^{c}\right| \geq \mathbf{m}_{*}(A \cap E)+\mathbf{m}_{*}\left(A^{c} \cap E\right) .
$$

The other inequality follows by subadditivity and we see that $A \in \mathcal{F}$. Since the intervals ($a, b]$ generate \mathcal{B}, and \mathcal{F} is a sigma algebra, we get $\mathcal{F} \supset \mathcal{B}$. Thus, restricted to \mathcal{B} also, \mathbf{m}_{*} gives a p.m.

Remark 18. (1) We got a σ-algebra \mathcal{F} that is larger than \mathcal{B}. Two natural questions. Does \mathcal{F} or \mathcal{B} contain all subsets of $[0,1]$? Is \mathcal{F} strictly larger than \mathcal{B} ? We show that \mathcal{F} does not contain all subsets. One of the homework problems deals with the relationship between \mathcal{B} and \mathcal{F}.
(2) \mathbf{m}, called the Lebesgue measure on $[0,1]$, is the only probability space one ever needs. In fact, all probabilities ever calculated can be seen, in principle, as calculating the Lebsgue measure of some Borel subset of $[0,1]$!

Generalities The construction of Lebesgue measure can be made into a general procedure for constructing interesting measures, starting from measures of some rich enough class of sets. The steps are as follows.
(1) Given an algebra \mathcal{A} (in this case finite unions of $(a, b])$, and a countably additive p.m \mathbf{P} on \mathcal{A}, define an outer measure \mathbf{P}_{*} on all subsets by taking infimum over countable covers by sets in \mathcal{A}.
(2) Then define \mathcal{F} exactly as above, and prove that $\mathcal{F} \supset \mathcal{A}$ is a σ-algebra and \mathbf{P}_{*} is a p.m. on \mathcal{A}.
(3) Show that $\mathbf{P}_{*}=\mathbf{P}$ on \mathcal{A}.

Proofs are quite the same. Except, in $[0,1]$ we started with \mathbf{m} defined on a π-system S rather than an algebra. But in this case the generated algebra consists precisely of disjoint unions of sets in S, and hence we knew how to define \mathbf{m} on $\mathcal{A}(S)$. When can we start with \mathbf{P} defined ona π-system? The crucial point in $[0,1]$ was that for any $A \in S$, one can write A^{c} as a finite union of sets in S. In such cases (which includes examples from the previous lecture) the generated algebra is precisely the set of disjoint finite unions of sets in S and we define \mathbf{P} on $\mathcal{A}(S)$ and then proceed to step one above.

Exercise 19. Use the general procedure as described here, to construct the following measures.
(a) A p.m. on $\left([0,1]^{d}, \mathcal{B}\right)$ such that $\mathbf{P}\left(\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{d}, b_{d}\right]\right)=\prod_{k=1}^{d}\left(b_{k}-a_{k}\right)$ for all cubes contained in $[0,1]^{d}$. This is the d-dimensional Lebesgue measure.
(b) A p.m. on $\{0,1\}^{\mathbb{N}}$ such that for any cylinder set $A=\left\{\omega: \omega_{k_{j}}=\varepsilon_{j}, j=1, \ldots, n\right\}$ (any $n \geq 1$ and $k_{j} \in \mathbb{N}$ and $\varepsilon_{j} \in\{0,1\}$) we have (for a fixed $p \in[0,1]$ and $q=1-p$)

$$
\mathbf{P}(A)=\prod_{j=1}^{n} p^{\varepsilon_{j}} q^{1-\varepsilon_{j}} .
$$

[Hint: Start with the algebra generated by cylinder sets].

