2. THE ‘STANDARD TRICK OF MEASURE THEORY’!

While we care about sigma fields only, there are smaller sub-classes that are useful in elucidating the proofs. Here
we define some of these.

Definition 11. Let S be a collection of subsets of Q2. We say that S is a

(1) w-systemifA,BcS — ANBeES.

(2) A-systemif (i) Qe S. (ii)A,BeESandACB — B\A€S. (ili)A, TAandA, €S = AcS.
(3) Algebraif (i) ¢, Qe S. ()A€S = A°€S. (ii)A,BeS = AUBES.

(4) c-algebraif 1) 0,Q2cS. (iH)AecS = A°eS. (i)A, €S = UA,€S.

We have included the last one again for comparision. Note that the difference between algebras and c-algebras is
just that the latter is closed under countable unions while the former is closed only under finite unions. As with c-
algebras, arbitrary intersections of algebras/A-systems/n-systems are again algebras/A-systems/m-systems and hence
one can talk of the algebra generated by a collection of subsets etc.

Example 12. The table below exhibits some examples.

Q S (m — system) A(S) (algebra generated by S) c(S)
(0,1] {(a,b] : 0<a<b<1} [{UY (ax,bi] : 0<a;<bi<ar<bh,...<by<1}| B(0,1]
[0,1] {(a,p]N[0,1] : a < b} {UY_ Ry : Ry €S are pairwise disjoint} B[0,1]
R? {1 (@i, bi] = a; < b;} {UN_ Ry : Ry €S are pairwise disjoint} Bpa
s collection of all cylinder sets nite disjoint unions of cylinaers s
0, 1} [ collection of all cylind finite disjoi i f cylind B({0,1}

Often, as in these examples, sets in a 7-system and in the algebra generated by the m-system can be described
explicitly, but not so the sets in the generated G-algebra.

Clearly, a c-algebra is an algebra is a T-systemas well as a A-system. The following converse will be useful. Plus,
the proof exhibits a basic trick of measure theory!

Lemma 13 (Sierpinski-Dynkin © — A theorem). Ler Q be a set and let F be a set of subsets of Q.

(1) ¥ is a 6-algebra if and only if it is a T-system as well as a h-system.
(2) If S is a mw-system, then A(S) = G(S).

Proof. (1) One way is clear. For the other way, suppose ¥ is a T-system as well as a A-system. Then, ¢,Q € F.
IfA€ F,then A°=Q\A € F. If A, € 7, then the finite unions B, := U!_ Ay = (N_,AS)" belong to F
as F is a m-system. The countable union UA, is the increasing limit of B, and hence belongs to ¥ by the
A-property.

(2) By part (i), it suffices to show that F := A(S) is a m-system, that is, we only need show that if A,B € F, then
ANB € F. This is the tricky part of the proof!

FixAcSandlet F4:={B€ ¥ : BNAc€ F}. Sisam-system, hence F4 D S. We claim that %4 is a
A-system. Clearly, Q € F4. If B,C € ¥4 and B C C, then (C\B)NA = (CNA)\(BNA) € ¥ because ¥ is a
A-system containing CNA and BNA. Thus (C\B) € F4. Lastly, if B, € F4 and B, | B, then B,NA € 4 and
B,NA T BNA. Thus B € F4. This means that F4 is a A-system containing S and hence F4 O ¥. In other
words, ANB &€ F forallAc SandallBe 7.

Now fix any A € F. And again define 74 :={B € F : BNA € F}. Because of what we have already
shown, T4 O S. Show by the same arguments that 74 is a A-system and conclude that 4 = F forallA € F.
This is another way of saying that ¥ is a T-system. |

As an application, we prove a certain uniqueness of extension of measures.

Lemma 14. Let S be a m-system of subsets of Q and let F = o(S). If P and Q are two probability measures on F
such that P(A) = Q(A) for all A € S, then P(A) = Q(A) forall A € F.

Proof. LetT ={A € F : P(A) =Q(A)}. By the hypothesis 7 D S. We claim that 7 is a A-system. Clearly, Q € T
If A,BeT and A D B, then P(A\B) =P(A) —P(B) = Q(A) — Q(B) = Q(A\B) implying that A\B € T. Lastly, if
A, €T and A, T A, then P(A) =lim,_..P(4,) =1lim, .. Q(4,) = Q(A). Thus 7 D A(S) which is equal to (S) by
Dynkin’s T — A theorem. Thus P=Q on ¥. [ |



3. LEBESGUE MEASURE
Theorem 15. There exists a unique Borel probability measure m on [0, 1] such that m(I) = |I| for any interval I.

[Sketch of the proof] Note that S = {(a,b] N[0, 1]} is a ®-system that generate B. Therefore by Lemma 14, unique-
ness follows. Existence is all we need to show. There are two steps.

Step 1 - Construction of the outer measure m, Recall that we define m, (A) for any subset by
m,(A) = inf {Z || : each I is an open interval and {/;} a countable cover forA} .
3

m, has the following properties. (i) m. is a [0, 1]-valued function defined on all subsets A C Q. (ii) m,(AUB) <
m, (A) +m,(B) for any A,B C Q. (iii) m.(Q) = 1.

These properties constitute the definition of an outer measure. In the case at hand, the last property follows from
the following exercise.

Exercise 16. Show that m, (a,b]=b—aif0<a<b <.

Clearly, we also get countable subadditivity m, (UA,) < Y m,(A,). The difference from a measure is that equality
might not hold, even if the sets are pairwise disjoint.

Step-2 - The c-field on which m, is a measure

Let m, be an outer measure on a set Q. Then by restricting m, to an appropriate 6-fields one gets a measure. We
would also like this o-field to be large (not the sigma algebra {0,Q} please!).

Cartheodary’s brilliant definition is to set

F={AcCcQ: m(E)=m,(ANE)+m,(A°NE) forany E}.

Note that subadditivity implies m,(E) < m.(ANE)+m,(A°NE) for any E for any A, E. The non-trivial inequality
is the other way.

Theorem 17. Then, F is a sigma algebra and u, restricted to F is a p.m.

Proof. Ttisclearthat0,QQ € ¥ and A € ¥ implies A € F. Next, suppose A,B € ¥. Then for any E,
m,(E)=m,(ENA)+m,(ENA°) =m,(ENANB)+{m,(ENANB°)+m,(ENA°)} >m,(ENANB)+m,(EN(ANB)))

where the last inequality holds by subadditivity of m, and (ENANB)U(ENA‘) =EN(ANB)‘. Hence ¥ is a
T-system.

As AUB = (A°NB°)“, it also follows that ¥ is an algebra. For future use, note that m,(AUB) = m,(A) +m.(B)
if A, B are disjoint sets in ¥ . To see this apply the definition of A € F with E =AUB.

It suffices to show that ¥ is a A-system. Suppose A,B € ¥ and A D B. Then

m,(E)=m,(ENB°)+m,(ENB)=m,(ENB‘NA)+m,(ENB°NA°)+m,(ENB) >m.(EN(A\B))+m,(EN(A\B)‘).
Before showing closure under increasing limits, Next suppose A, € F and A, T A. Then m.(A) > m.(A,) =

Y i m.(Ag\Ax—1) by finite additivity of m,. Hence m,(A) > ¥ m.(Ax\Ax—1). The other way inequality follows by
subadditivity of m, and we get m.(A) = Y m,(A;\Ax—1). Then for any E we get

n
m, (E) =m,(ENA,) +m,(ENAS) > m,(ENA,) +m, (ENAS) = ) m.(EN(A\Ac1)) +m,(ENAS).
k=1
The last equality follows by finite additivity of m, on ¥ . Let n — oo and use subadditivity to see that

oo

m,(E) > Z m, (EN(A\Ax—1)) +m (ENAY) >m,(ENA)+m,(ENA®).
k=1
Thus, A € F and it follows that F is a A-system too and hence a G-algebra.
Lastly, if A, € ¥ are pairwise disjoint with union A, then m,(A) > m,(4,) = Y}, m,(A;) — Y, m,(A;) while
the other way inequality follows by subadditivity of m, and we see that m,| ¢ is a measure.



Step-3 - 7 is large enough!

Let A = (a,b]. For any E C [0,1], let {I,} be an open cover such that m,(E) > Y |I,|. Then, note that {/, N (a,b)}
and {1, N[a,b]‘} are open covers for ANE and A° N E, respectively (I, N [a,b]° may be a union of two intervals, but
that does not change anything essential). It is also clear that |I,| = |I, N (a,b)| + |I, N (a,b)|. Hence we get

m.(E) > Y |l,N (a,6)|+ Y |1,N (a,5)°| > m,(ANE) +m.(A° NE).

The other inequality follows by subadditivity and we see that A € . Since the intervals (a,b] generate B, and ¥ is
a sigma algebra, we get F D B. Thus, restricted to B also, m,. gives a p.m. |

Remark 18. (1) We got a c-algebra ¥ that is larger than B. Two natural questions. Does ¥ or B contain all
subsets of [0,1]? Is F strictly larger than B? We show that F does not contain all subsets. One of the
homework problems deals with the relationship between B and ¥ .

(2) m, called the Lebesgue measure on [0, 1], is the only probability space one ever needs. In fact, all probabil-
ities ever calculated can be seen, in principle, as calculating the Lebsgue measure of some Borel subset of
[0,1]!

Generalities The construction of Lebesgue measure can be made into a general procedure for constructing interest-
ing measures, starting from measures of some rich enough class of sets. The steps are as follows.

(1) Given an algebra 4 (in this case finite unions of (a, b]), and a countably additive p.m P on 4, define an outer
measure P, on all subsets by taking infimum over countable covers by sets in 4.

(2) Then define ¥ exactly as above, and prove that ¥ D A4 is a 6-algebra and P, is a p.m. on 4.

(3) Show that P, =P on 4.

Proofs are quite the same. Except, in [0, 1] we started with m defined on a 7t-system S rather than an algebra. But in
this case the generated algebra consists precisely of disjoint unions of sets in S, and hence we knew how to define
m on 4(S). When can we start with P defined ona m-system? The crucial point in [0, 1] was that for any A € S, one
can write A€ as a finite union of sets in S. In such cases (which includes examples from the previous lecture) the
generated algebra is precisely the set of disjoint finite unions of sets in S and we define P on A4(S) and then proceed
to step one above.

Exercise 19. Use the general procedure as described here, to construct the following measures.

(a) A p.m. on ([0,1]¢,B) such that P([a1,b1] X ... x [ag,b4]) = [1{_, (bx — ai) for all cubes contained in [0, 1]¢.
This is the d-dimensional Lebesgue measure.

(b) A p.m. on {0, 1} such that for any cylinder set A = {® : oy, =¢€j, j=1,...,n} (any n > 1 and k; € N and
€; €{0,1}) we have (for a fixed p € [0,1] and g = 1 — p)

P(A) =] pr%¢' .
=1

[Hint: Start with the algebra generated by cylinder sets].



