2. The 'standard trick of measure theory'!

While we care about sigma fields only, there are smaller sub-classes that are useful in elucidating the proofs. Here we define some of these.

Definition 11. Let *S* be a collection of subsets of Ω . We say that *S* is a

- (1) π -system if $A, B \in S \implies A \cap B \in S$.
- (2) λ -system if (i) $\Omega \in S$. (ii) $A, B \in S$ and $A \subseteq B \implies B \setminus A \in S$. (iii) $A_n \uparrow A$ and $A_n \in S \implies A \in S$.
- (3) Algebra if (i) $\phi, \Omega \in S$. (ii) $A \in S \implies A^c \in S$. (iii) $A, B \in S \implies A \cup B \in S$.
- (4) σ -algebra if (i) $\phi, \Omega \in S$. (ii) $A \in S \implies A^c \in S$. (iii) $A_n \in S \implies \bigcup A_n \in S$.

We have included the last one again for comparision. Note that the difference between algebras and σ -algebras is just that the latter is closed under countable unions while the former is closed only under finite unions. As with σ -algebras, arbitrary intersections of algebras/ λ -systems/ π -systems are again algebras/ λ -systems/ π -systems and hence one can talk of the algebra generated by a collection of subsets etc.

Example 12. The table below exhibits some examples.

Ω	$S(\pi - \text{system})$	$\mathcal{A}(S)$ (algebra generated by S)	$\sigma(S)$
(0, 1]	$\{(a,b] : 0 < a \le b \le 1\}$	$\{\cup_{k=1}^{N}(a_k, b_k] : 0 < a_1 \le b_1 \le a_2 \le b_2 \dots \le b_N \le 1\}$	$\mathcal{B}(0,1]$
[0,1]	$\{(a,b] \cap [0,1] : a \leq b\}$	$\{\cup_{k=1}^{N} R_k : R_k \in S \text{ are pairwise disjoint}\}$	$\mathscr{B}[0,1]$
\mathbb{R}^{d}	$\{\prod_{i=1}^d (a_i, b_i] : a_i \leq b_i\}$	$\{\cup_{k=1}^{N} R_k : R_k \in S \text{ are pairwise disjoint}\}$	$\mathscr{B}_{\mathbb{R}^d}$
$\{0,1\}^{\mathbb{N}}$	collection of all cylinder sets	finite disjoint unions of cylinders	$\mathscr{B}(\{0,1\}^{\mathbb{N}})$

Often, as in these examples, sets in a π -system and in the algebra generated by the π -system can be described explicitly, but not so the sets in the generated σ -algebra.

Clearly, a σ -algebra is an algebra is a π -systemas well as a λ -system. The following converse will be useful. Plus, the proof exhibits a basic trick of measure theory!

Lemma 13 (Sierpinski-Dynkin $\pi - \lambda$ theorem). Let Ω be a set and let \mathcal{F} be a set of subsets of Ω .

- (1) \mathcal{F} is a σ -algebra if and only if it is a π -system as well as a λ -system.
- (2) If *S* is a π -system, then $\lambda(S) = \sigma(S)$.
- *Proof.* (1) One way is clear. For the other way, suppose \mathcal{F} is a π -system as well as a λ -system. Then, $\phi, \Omega \in \mathcal{F}$. If $A \in \mathcal{F}$, then $A^c = \Omega \setminus A \in \mathcal{F}$. If $A_n \in \mathcal{F}$, then the finite unions $B_n := \bigcup_{k=1}^n A_k = (\bigcap_{k=1}^n A_k^c)^c$ belong to \mathcal{F} as \mathcal{F} is a π -system. The countable union $\cup A_n$ is the increasing limit of B_n and hence belongs to \mathcal{F} by the λ -property.
 - (2) By part (i), it suffices to show that $\mathcal{F} := \lambda(S)$ is a π -system, that is, we only need show that if $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$. This is the tricky part of the proof!

Fix $A \in S$ and let $\mathcal{F}_A := \{B \in \mathcal{F} : B \cap A \in \mathcal{F}\}$. *S* is a π -system, hence $\mathcal{F}_A \supset S$. We claim that \mathcal{F}_A is a λ -system. Clearly, $\Omega \in \mathcal{F}_A$. If $B, C \in \mathcal{F}_A$ and $B \subset C$, then $(C \setminus B) \cap A = (C \cap A) \setminus (B \cap A) \in \mathcal{F}$ because \mathcal{F} is a λ -system containing $C \cap A$ and $B \cap A$. Thus $(C \setminus B) \in \mathcal{F}_A$. Lastly, if $B_n \in \mathcal{F}_A$ and $B_n \cap A \in \mathcal{F}_A$ and $B \cap A$. Thus $B \in \mathcal{F}_A$. This means that \mathcal{F}_A is a λ -system containing *S* and hence $\mathcal{F}_A \supset \mathcal{F}$. In other words, $A \cap B \in \mathcal{F}$ for all $A \in S$ and all $B \in \mathcal{F}$.

Now fix any $A \in \mathcal{F}$. And again define $\mathcal{F}_A := \{B \in \mathcal{F} : B \cap A \in \mathcal{F}\}$. Because of what we have already shown, $\mathcal{F}_A \supset S$. Show by the same arguments that \mathcal{F}_A is a λ -system and conclude that $\mathcal{F}_A = \mathcal{F}$ for all $A \in \mathcal{F}$. This is another way of saying that \mathcal{F} is a π -system.

As an application, we prove a certain uniqueness of extension of measures.

Lemma 14. Let *S* be a π -system of subsets of Ω and let $\mathcal{F} = \sigma(S)$. If **P** and **Q** are two probability measures on \mathcal{F} such that $\mathbf{P}(A) = \mathbf{Q}(A)$ for all $A \in S$, then $\mathbf{P}(A) = \mathbf{Q}(A)$ for all $A \in \mathcal{F}$.

Proof. Let $T = \{A \in \mathcal{F} : \mathbf{P}(A) = \mathbf{Q}(A)\}$. By the hypothesis $T \supset S$. We claim that T is a λ -system. Clearly, $\Omega \in T$. If $A, B \in T$ and $A \supset B$, then $\mathbf{P}(A \setminus B) = \mathbf{P}(A) - \mathbf{P}(B) = \mathbf{Q}(A) - \mathbf{Q}(B) = \mathbf{Q}(A \setminus B)$ implying that $A \setminus B \in T$. Lastly, if $A_n \in T$ and $A_n \uparrow A$, then $\mathbf{P}(A) = \lim_{n \to \infty} \mathbf{P}(A_n) = \lim_{n \to \infty} \mathbf{Q}(A_n) = \mathbf{Q}(A)$. Thus $T \supset \lambda(S)$ which is equal to $\sigma(S)$ by Dynkin's $\pi - \lambda$ theorem. Thus $\mathbf{P} = \mathbf{Q}$ on \mathcal{F} .

3. Lebesgue measure

Theorem 15. There exists a unique Borel probability measure **m** on [0,1] such that $\mathbf{m}(I) = |I|$ for any interval I.

[Sketch of the proof] Note that $S = \{(a, b] \cap [0, 1]\}$ is a π -system that generate \mathcal{B} . Therefore by Lemma 14, uniqueness follows. Existence is all we need to show. There are two steps.

Step 1 - Construction of the outer measure \mathbf{m}_* Recall that we define $\mathbf{m}_*(A)$ for any subset by

$$\mathbf{m}_{*}(A) = \inf \left\{ \sum_{k} |I_{k}| : \text{ each } I_{k} \text{ is an open interval and } \{I_{k}\} \text{ a countable cover for } A \right\}$$

 \mathbf{m}_* has the following properties. (i) \mathbf{m}_* is a [0,1]-valued function defined on all subsets $A \subset \Omega$. (ii) $\mathbf{m}_*(A \cup B) \leq \mathbf{m}_*(A) + \mathbf{m}_*(B)$ for any $A, B \subset \Omega$. (iii) $\mathbf{m}_*(\Omega) = 1$.

These properties constitute the definition of an **outer measure**. In the case at hand, the last property follows from the following exercise.

Exercise 16. Show that $\mathbf{m}_*(a, b] = b - a$ if $0 < a \le b \le 1$.

Clearly, we also get countable subadditivity $\mathbf{m}_*(\cup A_n) \leq \sum \mathbf{m}_*(A_n)$. The difference from a measure is that equality might not hold, even if the sets are pairwise disjoint.

Step-2 - The σ -field on which m_* is a measure

Let \mathbf{m}_* be an outer measure on a set Ω . Then by restricting \mathbf{m}_* to an appropriate σ -fields one gets a measure. We would also like this σ -field to be large (not the sigma algebra $\{\emptyset, \Omega\}$ please!).

Cartheodary's brilliant definition is to set

 $\mathcal{F} := \{A \subset \Omega : \mathbf{m}_*(E) = \mathbf{m}_*(A \cap E) + \mathbf{m}_*(A^c \cap E) \text{ for any } E\}.$

Note that subadditivity implies $\mathbf{m}_*(E) \leq \mathbf{m}_*(A \cap E) + \mathbf{m}_*(A^c \cap E)$ for any *E* for any *A*, *E*. The non-trivial inequality is the other way.

Theorem 17. Then, \mathcal{F} is a sigma algebra and μ_* restricted to \mathcal{F} is a p.m.

Proof. It is clear that $\emptyset, \Omega \in \mathcal{F}$ and $A \in \mathcal{F}$ implies $A^c \in \mathcal{F}$. Next, suppose $A, B \in \mathcal{F}$. Then for any E,

 $\mathbf{m}_*(E) = \mathbf{m}_*(E \cap A) + \mathbf{m}_*(E \cap A^c) = \mathbf{m}_*(E \cap A \cap B) + \{\mathbf{m}_*(E \cap A \cap B^c) + \mathbf{m}_*(E \cap A^c)\} \ge \mathbf{m}_*(E \cap A \cap B) + \mathbf{m}_*(E \cap (A \cap B)^c))$ where the last inequality holds by subadditivity of \mathbf{m}_* and $(E \cap A \cap B^c) \cup (E \cap A^c) = E \cap (A \cap B)^c$. Hence \mathcal{F} is a π -system.

As $A \cup B = (A^c \cap B^c)^c$, it also follows that \mathcal{F} is an algebra. For future use, note that $\mathbf{m}_*(A \cup B) = \mathbf{m}_*(A) + \mathbf{m}_*(B)$ if A, B are disjoint sets in \mathcal{F} . To see this apply the definition of $A \in \mathcal{F}$ with $E = A \cup B$.

It suffices to show that \mathcal{F} is a λ -system. Suppose $A, B \in \mathcal{F}$ and $A \supset B$. Then

$$\mathbf{m}_*(E) = \mathbf{m}_*(E \cap B^c) + \mathbf{m}_*(E \cap B) = \mathbf{m}_*(E \cap B^c \cap A) + \mathbf{m}_*(E \cap B^c \cap A^c) + \mathbf{m}_*(E \cap B) \ge \mathbf{m}_*(E \cap (A \setminus B)) + \mathbf{m}_*(E \cap (A \setminus B)^c).$$

Before showing closure under increasing limits, Next suppose $A_n \in \mathcal{F}$ and $A_n \uparrow A$. Then $\mathbf{m}_*(A) \ge \mathbf{m}_*(A_n) = \sum_{k=1}^n \mathbf{m}_*(A_k \setminus A_{k-1})$ by finite additivity of \mathbf{m}_* . Hence $\mathbf{m}_*(A) \ge \sum \mathbf{m}_*(A_k \setminus A_{k-1})$. The other way inequality follows by subadditivity of \mathbf{m}_* and we get $\mathbf{m}_*(A) = \sum \mathbf{m}_*(A_k \setminus A_{k-1})$. Then for any *E* we get

$$\mathbf{m}_*(E) = \mathbf{m}_*(E \cap A_n) + \mathbf{m}_*(E \cap A_n^c) \ge \mathbf{m}_*(E \cap A_n) + \mathbf{m}_*(E \cap A^c) = \sum_{k=1}^n \mathbf{m}_*(E \cap (A_k \setminus A_{k-1})) + \mathbf{m}_*(E \cap A^c).$$

The last equality follows by finite additivity of \mathbf{m}_* on \mathcal{F} . Let $n \to \infty$ and use subadditivity to see that

$$\mathbf{m}_*(E) \ge \sum_{k=1}^{\infty} \mathbf{m}_*(E \cap (A_k \setminus A_{k-1})) + \mathbf{m}_*(E \cap A^c) \ge \mathbf{m}_*(E \cap A) + \mathbf{m}_*(E \cap A^c).$$

Thus, $A \in \mathcal{F}$ and it follows that \mathcal{F} is a λ -system too and hence a σ -algebra.

Lastly, if $A_n \in \mathcal{F}$ are pairwise disjoint with union A, then $\mathbf{m}_*(A) \ge \mathbf{m}_*(A_n) = \sum_{k=1}^n \mathbf{m}_*(A_k) \to \sum_k \mathbf{m}_*(A_k)$ while the other way inequality follows by subadditivity of \mathbf{m}_* and we see that $\mathbf{m}_*|_{\mathcal{F}}$ is a measure.

Step-3 - \mathcal{F} is large enough!

Let A = (a,b]. For any $E \subset [0,1]$, let $\{I_n\}$ be an open cover such that $\mathbf{m}_*(E) \ge \sum |I_n|$. Then, note that $\{I_n \cap (a,b)\}$ and $\{I_n \cap [a,b]^c\}$ are open covers for $A \cap E$ and $A^c \cap E$, respectively $(I_n \cap [a,b]^c)$ may be a union of two intervals, but that does not change anything essential). It is also clear that $|I_n| = |I_n \cap (a,b)| + |I_n \cap (a,b)^c|$. Hence we get

$$\mathbf{m}_*(E) \ge \sum |I_n \cap (a,b)| + \sum |I_n \cap (a,b)^c| \ge \mathbf{m}_*(A \cap E) + \mathbf{m}_*(A^c \cap E)$$

The other inequality follows by subadditivity and we see that $A \in \mathcal{F}$. Since the intervals (a, b] generate \mathcal{B} , and \mathcal{F} is a sigma algebra, we get $\mathcal{F} \supset \mathcal{B}$. Thus, restricted to \mathcal{B} also, \mathbf{m}_* gives a p.m.

- **Remark 18.** (1) We got a σ -algebra \mathcal{F} that is larger than \mathcal{B} . Two natural questions. Does \mathcal{F} or \mathcal{B} contain all subsets of [0,1]? Is \mathcal{F} strictly larger than \mathcal{B} ? We show that \mathcal{F} does not contain all subsets. One of the homework problems deals with the relationship between \mathcal{B} and \mathcal{F} .
 - (2) **m**, called the Lebesgue measure on [0,1], is the only probability space one ever needs. In fact, all probabilities ever calculated can be seen, in principle, as calculating the Lebsgue measure of some Borel subset of [0,1]!

Generalities The construction of Lebesgue measure can be made into a general procedure for constructing interesting measures, starting from measures of some rich enough class of sets. The steps are as follows.

- (1) Given an algebra \mathcal{A} (in this case finite unions of (a, b]), and a *countably additive p.m* **P** on \mathcal{A} , define an outer measure **P**_{*} on all subsets by taking infimum over countable covers by sets in \mathcal{A} .
- (2) Then define \mathcal{F} exactly as above, and prove that $\mathcal{F} \supset \mathcal{A}$ is a σ -algebra and \mathbf{P}_* is a p.m. on \mathcal{A} .
- (3) Show that $\mathbf{P}_* = \mathbf{P}$ on \mathcal{A} .

Proofs are quite the same. Except, in [0, 1] we started with **m** defined on a π -system *S* rather than an algebra. But in this case the generated algebra consists precisely of disjoint unions of sets in *S*, and hence we knew how to define **m** on $\mathcal{A}(S)$. When can we start with **P** defined ona π -system? The crucial point in [0, 1] was that for any $A \in S$, one can write A^c as a finite union of sets in *S*. In such cases (which includes examples from the previous lecture) the generated algebra is precisely the set of disjoint finite unions of sets in *S* and we define **P** on $\mathcal{A}(S)$ and then proceed to step one above.

Exercise 19. Use the general procedure as described here, to construct the following measures.

(a) A p.m. on $([0,1]^d, \mathcal{B})$ such that $\mathbf{P}([a_1,b_1] \times \ldots \times [a_d,b_d]) = \prod_{k=1}^d (b_k - a_k)$ for all cubes contained in $[0,1]^d$. This is the d-dimensional Lebesgue measure.

(b) A p.m. on $\{0,1\}^{\mathbb{N}}$ such that for any cylinder set $A = \{\omega : \omega_{k_j} = \varepsilon_j, j = 1, ..., n\}$ (any $n \ge 1$ and $k_j \in \mathbb{N}$ and $\varepsilon_j \in \{0,1\}$) we have (for a fixed $p \in [0,1]$ and q = 1 - p)

$$\mathbf{P}(A) = \prod_{j=1}^{n} p^{\varepsilon_j} q^{1-\varepsilon_j}.$$

[Hint: Start with the algebra generated by cylinder sets].